본문 바로가기

물리/기초역학

케플러의 법칙 유도하기

케플러의 법칙

16~17세기, 케플러는 관측 기록으로부터 태양계 행성의 운동을 설명하는 3가지 법칙을 발견해냈다.

1. 행성들의 궤도는 타원 모양이다 (타원 궤도의 법칙)

2. 태양과 행성을 잇는 선이 시간당 쓸고 지나가는 면적은 일정하다 (면적 속도 일정의 법칙)

3. 행성이 궤도를 한 바퀴 도는 주기의 제곱은 타원의 긴 반지름의 세제곱에 비례한다 (조화의 법칙)

케플러는 관측에 의존해서 이러한 법칙들을 이끌어냈다. 하지만 우리에게는 뉴튼의 만유인력과 여러 수학적인 도구가 있다. 케플러의 법칙들을 유도해보자.


제2법칙: 면적 속도 일정의 법칙

우선 가장 유도하기 쉬운 제2법칙에서 출발하자. 우리는 행성의 운동을 나타내기 위해 태양을 원점으로 하는 극좌표계를 이용할 것이다. 행성의 위치를 나타내는 벡터를 $\vec{r}$이라고 두자. 시간 $dt$동안 쓸고 지나가는 면적을 $dA$라고 하면, $$dA=\frac{1}{2} \left\vert \vec{r} \times d\vec{r} \right\vert$$이다. 그러면 면적 속도 $\frac{dA}{dt}$는 $$\frac{dA}{dt} = \frac{1}{2} \left\vert \vec{r} \times \frac{d\vec{r}}{dt} \right\vert = \frac{1}{2} \left\vert \vec{r} \times \vec{v} \right\vert$$로 구할 수 있다.

이제 $\left\vert \vec{r} \times \vec{v} \right\vert$가 일정하다는 것을 보이면 된다. 시간에 대해 미분했을 때 $0$이 됨을 보이면 될 것이다. $$\frac{d}{dt} \left\vert \vec{r} \times \vec{v} \right\vert = \left\vert \vec{v} \times \vec{v} + \vec{r} \times \vec{a} \right\vert$$

평행한 벡터의 외적은 $0$이므로, $\vec{v} \times \vec{v} = 0$이다. 그리고 행성에 작용하는 힘은 언제나 태양, 즉 원점을 향하기 때문에, 위치 벡터와 가속도 벡터도 평행하다. 즉, $\vec{r} \times \vec{a} = 0$이다. 그러므로, $$\frac{d}{dt} \left\vert \vec{r} \times \vec{v} \right\vert = \left\vert \vec{v} \times \vec{v} + \vec{r} \times \vec{a} \right\vert = 0$$


각운동량의 보존

케플러 제2법칙이 기하학적인 관점에서는 면적 속도 일정의 법칙으로 나타나지만, 물리적인 관점에서는 각운동량의 보존으로 볼 수 있다. 각운동량은 $$\vec{L} = \vec{r} \times \vec{p}$$로 정의된다. ($\vec{p}=$는 운동량) 그런데 운동량은 $m\vec{v}$이므로, $$\vec{L} = \vec{r} \times m\vec{v} = m (\vec{r} \times \vec{v})$$으로 표현할 수 있다. 어딘가에서 본 식이 아닌가? 위에서와 같은 논리로, $\frac{d\vec{L}}{dt}=0$을 유도할 수 있다. 즉, 행성의 궤도 운동에서 각운동량은 보존된다. $$l=\frac{L}{m} = \left\vert \vec{r} \times \vec{v} \right\vert$$로 정의하자. 질량과 각운동량 둘 다 변하지 않으므로, $l$도 일정하다. 그러면 $$\frac{dA}{dt} = \frac{l}{2}$$이므로, 면적 속도 일정의 법칙 또한 자연스럽게 유도된다.

극좌표계와 직교 좌표계의 변환을 이용하면, $$\vec{r} \times \vec{v} = \vec{r} \times (\dot r \hat{r} + r \dot\theta \hat{\theta}) = mr^2 \dot\theta \hat{r} \times \hat{\theta}$$이므로, $l=r^2 \dot\theta$임을 알 수 있다.


제1법칙: 타원 궤도의 법칙

태양이 행성에 작용하는 힘이 거리에 의해 결정된다고 가정하고, 그 크기를 $f(r)$이라고 하자. (만유인력의 법칙에 따르면, $f(r)=\frac{GMm}{r^2}$지만 보다 일반적인 식을 유도하기 위해 $f(r)$로 놓을 것이다) 운동 방정식을 세우면, $$m \ddot{\vec{r}} = f(r) \hat{r}$$이다. 그리고 극좌표계와 직교 좌표계의 변환으로부터 $$\ddot{\vec{r}} = (\ddot r - r \dot\theta^2) \hat{r} + (2 \dot r \dot \theta + r \ddot \theta ) \hat{\theta}$$이므로, 두 개의 스칼라 방정식을 얻을 수 있다. 그 중, $\hat{r}$ 성분의 방정식 $$m (\ddot r - r \dot\theta^2) = f(r)$$만을 고려하자. ($\hat{\theta}$ 성분의 방정식으로부터는 제2법칙과 동등한 결과를 얻을 수 있다.)

식을 $r$에 대한 방정식으로 나타내기 위해, $\dot\theta$를 제거하자. $l=r^2 \dot\theta$의 관계를 이용하면 $\frac{1}{r}$ 항이 나올 것이다. $u=\frac{1}{r}$로 치환하여 방정식을 풀자. 그러면 $\dot\theta = l \frac{1}{r^2} = lu^2$이다. 그리고 $\ddot r$을 $u$에 대해 나타내자. $$\dot r = -\frac{1}{u^2} \dot u = -\frac{1}{u^2} \frac{d\theta}{dt} \frac{du}{d\theta} = -l \frac{du}{d\theta}$$ $$\ddot r = -l \frac{d^2 u}{d\theta^2} \frac{d\theta}{dt} = -l \dot\theta \frac{d^2 u}{d \theta^2} = -l^2 u^2 \frac{d^2 u}{d \theta^2}$$ 이제 원래의 식의 $\ddot r$과 $\dot\theta$를 $u$에 대한 식으로 바꾸면, $$m(-l^2 u^2 \frac{d^2 u}{d \theta^2} - \frac{1}{u} (lu^2)^2) = f(\frac{1}{u})$$를 얻을 수 있다. 정리하면, $$\frac{d^2 u}{d \theta^2} + u = -\frac{1}{ml^2 u^2} f(\frac{1}{u})$$이다. 힘을 나타내는 $f(r)$이 주어지면 이 방정식을 풀어 궤도를 구할 수 있다.

그러면 거리의 제곱에 반비례하는 인력이 작용하는, 중력과 같은 상황을 고려하자. 편의상 $k=GMm$으로 놓고, $f(r)=-\frac{k}{r^2} = -ku^2$로 표현하자. 위의 방정식에 대입하면 $$\frac{d^2 u}{d \theta^2} + u = -\frac{1}{ml^2 u^2} (-ku^2) = \frac{k}{ml^2}$$를 얻는다. 오른쪽이 상수항이므로, 단순조화진동과 같은 방식으로 방정식을 풀 수 있다. 초기 조건에 의해 결정되는 상수 $A$와 $\theta_0$에 대해, $$u=A \cos(\theta - \theta_0) + \frac{k}{ml^2}$$로 표현된다. 역수를 취하면, $$r = \frac{1}{A \cos(\theta - \theta_0) + \frac{k}{ml^2}} = \frac{\frac{ml^2}{k}}{1+\frac{ml^2 A}{k} \cos(\theta - \theta_0)}$$이다. 이는 이차곡선(Wikipedia)의 극좌표 방정식과 같은 꼴이다. 이심률 $\epsilon=\frac{ml^2 A}{k}$에 의해 궤적이 결정된다. 그리고 우리는 행성과 같이 반복해서 궤도를 그리는 경우를 고려하므로, 원($\epsilon=0$) 또는 타원($\epsilon<1$) 궤도가 가능하다. (태양계에 한 번만 찾아오고 다시 멀리 떠나버리는 혜성의 경우 포물선 또는 쌍곡선 형태의 궤적을 그릴 것이다.)


제3법칙: 조화의 법칙

제2법칙에서 $$\dot A = \frac{1}{2} l$$을 유도했다. 그리고 제1법칙에 의해 궤도는 타원이므로, 행성이 한 바퀴를 도는 동안 쓸고 지나간 면적에 타원의 넓이를 구하는 공식을 적용할 수 있다. 긴반지름 $a$, 짧은반지름 $b$인 타원의 넓이는 $\pi a b$이다. 행성의 주기를 $\tau$라고 하면 $\dot A$가 일정하므로 $$A = \dot A \tau = \frac{1}{2} l \tau$$로 넓이를 구할 수 있다. 즉, $$\frac{1}{2} l \tau = \pi a b$$인 것이다. $a$와 $b$를 연결해주는 식에는 제곱근이 포함되므로, 편의를 위해 양변을 제곱하자. $$\frac{1}{4} l^2 \tau^2 = \pi^2 a^2 b^2$$ $b^2 = (1-\epsilon^2) a^2$이므로, $$\tau^2 = \frac{4\pi^2}{l^2} a^2 (1-\epsilon^2) a^2 = \frac{4\pi^2}{l^2} (1-\epsilon^2) a^4 = \frac{4\pi^2}{l^2} (1-\epsilon^2) a^4$$이다. 이제 타원의 기하학적인 성질을 이용해서 정리하는 일만 남았다.

궤도에 대한 식에서 $\theta-\theta_0=\pm \frac{\pi}{2}$인 경우(초점을 지나고 장축에 수직)를 고려하자. 이 때, $\cos (\theta-\theta_0) = 0$이므로, $$r=\frac{ml^2}{k}$$가 된다. 그리고 타원의 성질로부터 $$r=(1-\epsilon^2) a$$임도 알려져 있다. $1-\epsilon^2$에 대해 정리하면, $$1-\epsilon^2 = \frac{ml^2}{ak}$$이고, 위에서 구한 주기의 제곱에 대한 식에 대입하면 $$\tau^2 = \frac{4\pi^2}{l^2} \frac{ml^2}{ak} a^4 = \frac{4\pi^2 m}{k} a^3$$으로, 우리가 구하고자 한 비례 관계를 확인할 수 있다.